Q.P	Code:	16CS517
-----	-------	---------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations Feb-2021 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

Time: 3 hours

Max. Marks: 60

6M

7M

R16

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a	Conside	er the belo	w finite au	itomata ai	nd check the strings are accepted or not	6M
			States	Input A	phabtes	bin Die Charles (1) € e e	
			(Q)	0	1		
			→q0	q1	q3	Da ba zavongeo an dalawa A Orlina nanyan Senara	
			q1	q0	q2		
			(q2)	q3	q1	bine we have been do not also been at	
			q3	q2	q0		
		(i) 1110) (ii) 0001	(iii) 1010)		
	b	a) Defii	ne Finite A	utomaton			6M
		b) Show	v that (0*1	*)* = (0+	l)*.		
		c) Defin	ne Mealy n	nachine ar	nd Moore	machine.	
						OR	
2	a	a) Write	e about rela	ations on s	sets.		6M
		b) List	out the ide	ntities of I	Regular ey	xpression.	

b Construct DFA for the given NFA

	Next state		
	0	1	
$\rightarrow q_0$	q0,q1	q0	
<i>q</i> 1	q2	q1	
q2	q 3	q3	
q3		q2	
			

UNIT-II

- 3 a Explain how equivalence between two FA is verified with an example.8Mb List out the identities of Regular expression.4MOR
- 4 a Construct the RE for the Given FA using Arden's theorem

b Construct an equivalent FA for the given regular expression $(0+1)^*(00+11)(0+1)^*$ 5M

		-	1
		1	
	5		

Q.P Code: 16CS517

UNIT-III

		0111-111	
	a	Explain the closure properties of context free languages.	6 M
5	b	Convert the following grammar into CNF.	6M
		$S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a$.	
		OR	
6	a	Explain about derivation and parse trees? Construct the string 0100110 from the	5M
		Leftmost and Rightmost derivation.	
		S→0S/1AA	
		A→0/1A/0B	
		B→1/0BB	
	b	Write the procedure and Eliminate left recursion from the following Grammar	7M
		E→E+T/T	
		T→T*F/F	
		F→(E)/id	
		UNIT-IV	
7	a	Construct a PDA which recognizes all strings that contain equal number of 0's	6M
		and 1's.	
	b	Define push down automata. Explain acceptance of PDA with empty stack.	6 M
		OR	
8	a	Construct an equivalent PDA for the following CFG.	6M
		S→aAB bBA	
		A→bS a	
		$B \rightarrow aS \mid b.$	
	b	Write the process for convert PDA into an equivalent CFG.	6M
		UNIT-V	
9	я	Write about Universal TM	4 M
-	h	Construct a Turing machine that recognizes the language $L = \{a^n b^n \ n > 1\}$	8M
	N	OR	OIVE
10	я	Define PCP	2M
10	n h	Explain the various types of Turing machine	10M
	U	Explain the various types of Furing interime.	10111

*** END ***